

STANDARDIZATION GROUP FOR EMBEDDED TECHNOLOGIES

SGET e.V. Goals

- Provide a platform
 - to grow embedded industry specifications with a low overhead and high performance
- Define and market industry standards
 - without bureaucracy
- Free access and download
 - for all specifications
- Non-Profit Organization
 - low operation cost is financed by the membership fee's

2020: 47 members

New members 2020:

Somdevices, DH Electronic, NXP, Phytec, BMK, Enclustra, Embedded Experts, Texas Instruments, Trenz Electronics

Who's who at SGET

Who are the heads behind SGET e.V. in 2021

- President:
- 1. Deputy:
- 2. Deputy:
- Secretary:
- Treasurer:

Christian Eder - congatec Martin Unverdorben - Kontron open Mark Swiecicki Martin Steger - IESY

Workgroups

Chairman of the Standards Development Teams

- SMARC module (SDT.01)
- Qseven (SDT.02)
- embedded NUC (SDT.03)
- UIC (SDT.04)
- OSM (SDT.05)

Martin Unverdorben - Kontron Mark Swiecicki Martin Steger - IESY Carsten Rebmann - Adlink Martin Steger - IESY

Standardization – Why?

Henry Maudslay developed the first industrially practical screw-cutting lathe in 1800. This allowed for the standardization of screw thread sizes for the first time and paved the way for the practical application of interchangeability (an idea that was already taking hold) to nuts and bolts.

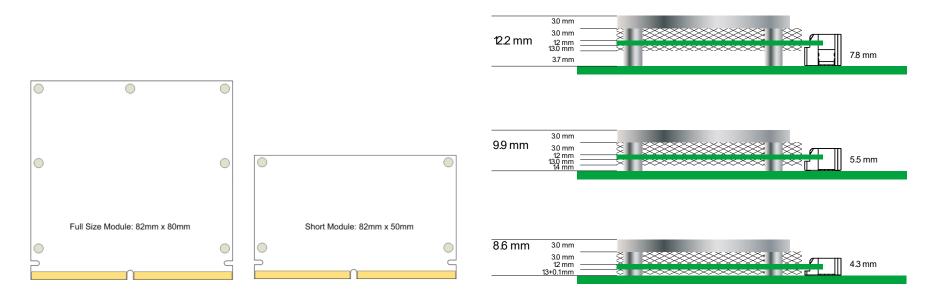
SGET hosted Standards

SNARC module

Two different Infrastructures

Parallel TFT display bus MIPI display interface Camera interfaces Multiple SPI links Multiple SDIO interfaces Serial ports

Many USB (8 lanes) Lots of PCI Express (6 lanes) PCI Express graphics (16 lanes) LPC (an x86 only bus)and more


X86 +

Designed for mobility

SMARC Modules combines both worlds on one form factor

Feature Set SMARC 2.1

4x Gigabit Ethernet¹

4x PCle¹

4x MIPI CSI²

HDA + 2x I2S

2x LVDS/eDP/MIPI DSI

DP++/HDMI + DP++

1x SATA

6x USB 2.0 + 2x USB 3.0

14x GPIO + 1x SDIO

4x SER + 2x CAN

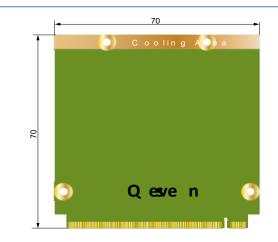
eSPI + QSPI

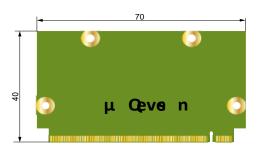
SPI + I2C

Power

¹ 2x ETH & 4x PCIe or 4x ETH & 2x PCIe

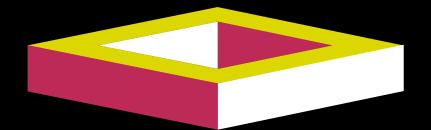
² 2x Flatfoil Connector


Mechanics and Cooling


Compact size

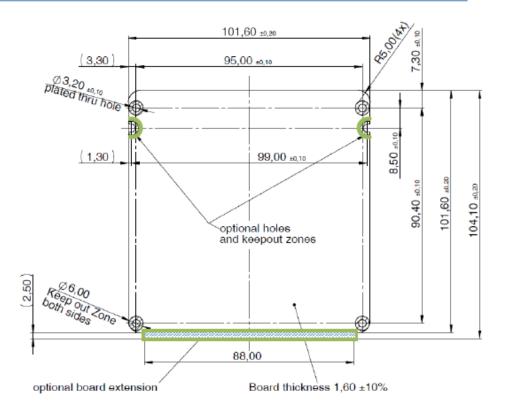
- Square 7 cm (~2,76" x ~2,76")
- Rev. 2.0 allows for a microQseven Size 4 x 7 cm (~2,76" x 1,57")
- Solid mechanical mounting
- Cost efficient direct edge connector

Defined Cooling Interface


- Top edge defined for heat transfer
- Heat transfer from CPU, Chipset and DRAM enhanced via copper layers
- Heatspreader defined for high power versions (max. 12 W)

Feature Set Qseven

Gigabit Ethernet
LPC
4x PCle
HDA / I2S
LVDS 2x24 / eDP
2x MIPI CSI (Flatfoil)
DDI
2x SATA
8x USB 2.0 / 2x USB 3.0
8x GPIO / SDIO
2x SER / CAN
SPI / I2C
Power



embedded NUC

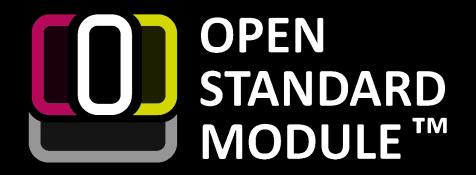
Small Embedded Form Factor

- Typically used for
 - Qseven Carrier Board
 - SMARC Carrier Board

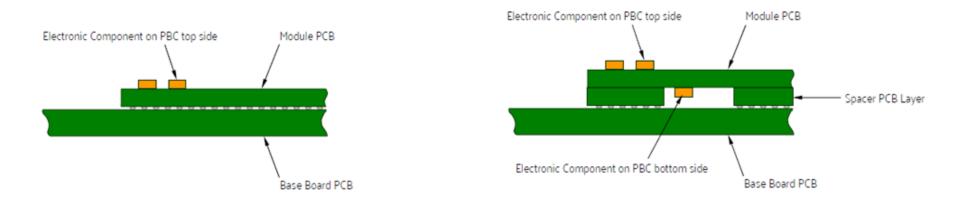
eNUC

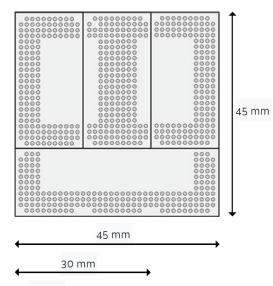
#11 Report SDT.04 UIC

Carsten Rebmann



Universal Internet of Things

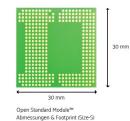

- Software specification
- Common approach for embedded hardware suppliers to provide access to the sensor level devices onboard or thru additional interfaces
- Independent from supplier specific software interfaces
- Workgroup closed
- Results are free available on Github

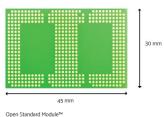


Standard Height

Extended Height

15 mm






15 mm Open Standard Module™ Abmessungen & Footprint (Size-O)

30 mm

Abmessungen & Footprint (Size-M)

45 mm

Open Standard Module™ Abmessungen & Footprint (Size-L)

STANDARDIZATION GROUP FOR EMBEDDED TECHNOLOGIES